Frauds, fear of failure and finances: The mental health problem in academia

Lauren Revie | 10 OCT 2019

Mental health is a hot topic at the moment – and it is about time. Around 1 in 6 adults will experience anxiety or depression (Mental Health Foundation, 2016), with the number of people recognising suicidal thoughts increasing drastically (McManus et al., 2016). However, as a response to this growing problem, we have also seen a rise in the formation and support for mental health charities and research into different mental health and psychiatric conditions. More and more people are beginning to talk about our mental health openly; how we feel, what is affecting our mental health, and seeking support for problems we might be experiencing. Mental health awareness and advocacy is gaining momentum, and everything *seems* to be heading the right way in working towards normalization of sharing our feelings, emotions and mental state. 

But what about the researchers behind the mental health statistics and the breakthroughs? There is  growing evidence of a mental health epidemic that is often hidden behind academic success, with almost half of PhD students and graduates in academia struggling with mental health. Approximately 41% of PhD students demonstrate moderate to severe symptoms of anxiety and depression – almost threefold that of the general public – meaning mental health issues are rife in researchers (Evans et al., 2018). 

Perhaps, then, we may attribute this to the ‘type’ of person who is attracted to pursuing a career in academia – highly motivated, a perfectionist, and maybe a little hard on themselves. However, research by Levecque et al (2017) compares the incidence of these problems within PhD students to their highly educated counterparts in industry. The findings indicate that one in two PhD students experience psychological distress, and one in three is at risk of developing a common psychiatric disorder – findings which are significantly higher than those within the comparison group.

But why might this be? Why would seemingly driven, motivated and highly successful young individuals be battling with these staggeringly high rates of mental health problems? Levecque and colleagues (2017) attribute these statistics to the effect of their research on work-family life, and found strong predictors of poor mental health to be job demands, lack of job control, and supervisor’s leadership style. Others have attributed these rates to workplace ‘bullying’ of doctoral students (English, Flaherty & English, 2018) and a feeling of disconnection from the research community due to unfamiliar topics or long isolated work (Reeve & Patridge, 2017). 

Academics and postgraduate students alike attribute mental health problems and feelings of being overwhelmed to lack of support and isolation. Further research by Belkhir et al (2018) followed a group of young academics and early career researchers over four years.  It was reported that feelings of loneliness came from social isolation due to workplace culture, meaning individuals weren’t able to make meaningful relationships with those in their immediate groups. In addition to this, they also reported that they felt unable to participate in conversations with their peers and others in their field, as they felt they lacked both cultural and technical knowledge. 

This leads us on to an issue that many postgraduates and early career researchers can related to, known as the ‘Imposter syndrome’. Clance and Imes (1978) first coined the term ‘Imposter syndrome’ in a bid to collectively define the traits of high-achievers who were struggling to accept and internalize their own success. Often, someone struggling with imposter syndrome will claim to be a fraud, or underestimate their own knowledge, attributing their success to luck or circumstance. ‘Imposters’ will often compare themselves to others, and reject praise, leading to anxiety, stress and in some cases, depression. Positive correlations have been observed between imposter syndrome and academic success, neuroticism and perfectionism – all strong traits of a postgraduate student or early career researcher. And it isn’t just them! Many senior faculty members wake up believing they will one day be ‘found out’ Whilst the syndrome is not exclusive to academics, it is rife amongst university staff and students, and is a huge contributor to declining mental health in post graduate education. Watson and Betts (2010) attribute feelings of imposter syndrome to three main themes in an early career researcher’s experience: fear, family and fellowship. The researchers assessed email conversations of graduate researchers, in which a fear of being discovered as a fraud appeared to be one of the main factors driving feelings of imposter syndrome. In addition, this was further exacerbated by feelings of being drawn away from family responsibilities, and a lack of peer support or fellowship during study. 

There are a number of reasons why researchers and students may feel like imposters. Firstly, academia is a competitive world. Postgraduate study attracts the best of the best, and fairly often, those surrounding you are intelligent and also over-achieving. Partnered with the constant pressure to ‘publish or perish’, and the need to justify your project and area of expertise, this can result in stress, anxiety and often burnout (Bothello & Roulet, 2018).

Other factors which may also contribute to poor mental health in academia include difficulty in time management, organizational freedom (van Rijsingen, 2018) and perception of career perspectives, funding opportunities and financial problems. The struggle to manage your own work, produce innovation and progress whilst being largely self-taught can often come at the price of mental health issues. It is suggested that stress may stem from insecurity within this sphere – be it financial insecurity, or insecurity concerning ‘unwritten rules’ within the lab or school – and also from frequent evaluation, and a seemingly unmanageable workload (Pyhalto et al., 2012). 

All in all, the consensus seems to be that postgraduate researchers and academics alike are struggling in the University environment. This issue is beginning to be addressed more readily, however the phenomenon is not new. McAlpine and Norton (2006) note that the calls for action to rectify this growing problem have generally been ad hoc rather than theory driven (ironically!). As such, research which has been conducted has not been broad enough to integrate factors which could influence outcomes in a University context. And so the cycle continues. 

If you have been affected by anything in this article, please talk to a trusted friend or family member, or access help on

www.nhs.uk/conditions/stress-anxiety-depression/mental-health-helplines/

www.mind.org.uk

www.samaritans.org

References:

  • Bothello, J., & Roulet, T. J. (2018). The imposter syndrome, or the mis-representation of self in academic life. Journal of Management Studies, 56(4), 854-861.
  • Clance, P.R., & Imes, S. A. (1978). The impostor phenomenon in high achieving women: Dynamics and therapeutic intervention. Psychotherapy: Theory, Research, and Practice, 15(3), 241-247. 
  • English, S., Flaherty, A., & English, A. (2018). Gaslit! An examination of bullying on doctoral students. Perspectives on Social Work, 20.
  • Evans, T. M., Bira, L., Gastelum, J. B., Weiss, L. T., & Vanderford, N. L. (2018). Evidence for a mental health crisis in graduate education. Nature biotechnology, 36(3), 282.
  • Levecque, K., Anseel, F., De Beuckelaer, A., Van der Heyden, J., & Gisle, L. (2017). Work organization and mental health problems in PhD students. Research Policy, 46(4), 868-879.
  • McAlpine, L., & Norton, J. (2006). Reframing our approach to doctoral programs: An integrative framework for action and research. Higher Education Research & Development, 25(1), 3-17.
  • McManus, S., Bebbington, P., Jenkins, R., & Brugha, T. (2016). Mental Health and Wellbeing in England: Adult Psychiatric Morbidity Survey 2014: a Survey Carried Out for NHS Digital by NatCen Social Research and the Department of Health Sciences, University of Leicester. NHS Digital.
  • Mental Health Foundation. (2016). Fundamental Facts about Mental Health 2015. Mental Health Foundation.
  • Pyhältö, K., Toom, A., Stubb, J., & Lonka, K. (2012). Challenges of becoming a scholar: A study of doctoral students’ problems and well-being. ISrn Education, 2012.
  • Reeve, M. A., & Partridge, M. (2017). The use of social media to combat research-isolation. Annals of the Entomological Society of America, 110(5), 449-456.
  • van Rijsingen. (2018), E. Mind Your Head# 1: Let’s talk about mental health in academia.
  • Watson, G., & Betts, A. S. (2010). Confronting otherness: An e-conversation between doctoral students living with the Imposter Syndrome. Canadian Journal for New Scholars in Education/Revue canadienne des jeunes chercheures et chercheurs en éducation, 3(1).

Why I do What I do: Reflections on Schizophrenia research.

Niels Haan | 15 FEB 2018

Dr Niels Haan is a postdoctoral researcher based at the NMHRI, Cardiff University. He has previously written an article about his research for us, which you can read here.

This post is dedicated to the memory of Dick van der Lee (1962-2018). Take it away, Dick.

Ask any savvy medical researcher why they do what they do, and nine out of ten times the answer is “to help humanity” or some similarly grandiose statement. In reality, this is of course a far more complicated question, and this is different for everyone.  The real reason may be as prosaic as “it pays the bills”. If you will indulge me, let me tell you my very personal story about why I do what I do.

My father is the bass player in a blues band, in which he has played since his school days. Since as long as I can remember, they have had the same lead guitarist, Dick van der Lee. Highly intelligent, well read, and a superb guitar player. Growing up, I guess I always realised Dick was a bit different. He never worked, for starters. As I grew older, I learned why. Dick was schizophrenic.

Schizophrenia presents differently in every patient. Many are able to lead fairly normal lives, and have jobs. This is not the place to go into detail, but suffice to say, Dick was badly affected by his schizophrenia. Medication helped keep things under control, but he wasn’t able to work. His music was everything to him, and every last spare penny was spent on guitars, pedals and other accessories.

As the time came to decide what I was going to study at university, I know it was going to be something medically related. As for many other researchers, attacking and dismantling a complex problem appealed to me, so I fairly quickly decided on a career in research. The combination of realising that we don’t really know anything about the brain yet, the excellent neuroscience teaching during my undergrad, and my personal experiences with Dick and others, made me determined to do neuroscience research.

The vagaries of academia being what they are, though I was able to work in disease relevant research most of the time, I had not worked on schizophrenia. For the last year or two, this has changed, and I am now working on the effects of genetic risk factors for the disease. You could say I’ve reached my goal.

Especially in complex, yet common, diseases such as schizophrenia, where we’ve barely scratched the surface of what’s going on, research sometimes seems like a thankless task. Without trying to sound grandiose, I think I speak for many of us in saying that our personal experiences with these diseases, in family, friends, or indeed ourselves, help us to keep going. To keep chipping away at that surface slowly, in the hope of actually one day understanding, and yes, curing these diseases.

A few weeks ago, Dick passed away. Although he has now finally reached shelter from that never-ending storm in his head, this put things into perspective again. I firmly believe that, had Dick not been cursed through his genetics or development, he could have gone far with his music. This is why I do what I do. It is for Dick. It is for my other friends who have suffered with depression or anxiety, who will remain anonymous. It is for all those people suffering, often in silence, from psychiatric conditions for which we say we have ‘treatments’, which are really nothing better than sticking plasters. It is for them why I do what I do.

Edited by Jonathan Fagg

The indirect applications of leisure technology

Kira Rienecker | 3 MAR 2017

As grant applications within science become increasingly competitive, the pressure grows to highlight the direct benefits of one’s research to human health and prosperity. These are the impact statements–is your research going to directly contribute to the “cure”?

Unfortunately, this attitude obscures a very important source of new knowledge and tools–simple curiosity and ‘play’. It is important to remember we don’t always know what we are doing when we dive into research. In fact, simple exploration of interesting concepts can have very important knock-on benefits!

For example, as we improve technology for leisure, developing more powerful smartphones and more realistic video games, we are also creating tools which can feed back into health and medicine applications. Smartphone apps are a very common example of this feedback. CloudUPDRS, an Android app designed by George Roussos and colleagues at Birbeck, University of London, takes advantage of the smartphone’s gyroscopic sensors to conduct frequent physical tests for Parkinson’s patients. Tying these physical tests and the associated self-assessment questionnaires to this constant companion device help researchers track symptoms and disease progression regularly and over an extended period of time. 

Developments in smartphones for leisure made this tool possible, but the feedback loop between leisure technology, health research, and medicine extends beyond our phones. Virtual reality, used for everything from gaming to drone flying, can be used to help train surgeons.

It is very important to keep investing in science and technology as a whole, even when the benefits to us aren’t immediately apparent. Encouraging play and building tools for play can help us creatively solve important problems. Restricting funding to “the most relevant” research angles may be an important investment strategy, but it may also risk restricting our creativity. Curiosity beyond ourselves helps us develop new knowledge –while our questions may not directly apply to a “cure”, they may incidentally equip us with tools we didn’t know we needed.


CloudUPDRS is explained in the New Scientist Article: https://www.newscientist.com/article/2123459-super-fast-parkinsons-app-will-track-symptoms-more-closely/

Feature Image Link

There is more than one scientist

Rachael Stickland | 14 MAR 2016

umbrellaThe word ‘scientist’..
Why do we use this umbrella term?

What do the words scientist, physicist, consilience, catastrophism, uniformitarian, ion, anode and cathode all have in common? Well, the late William Whewell, a wordsmith and polymath, created them, often suggesting them to scientists when they had made a discovery. As well as the many scientific disciplines on which he published, he also found time to compose poetry. What a babe. In the 19th century, people we now call ‘Scientists’ were ‘Natural Philosophers’ or ‘Men of Science.’ Whewell first proposed the word scientist anomalously in 1834, and then more seriously in 1840 in ‘The Philosophy of the Inductive Sciences’:

williamwImage source 

“As we cannot use physician for a cultivator of physics, I have called him a physicist. We need very much a name to describe a cultivator of science in general. I should incline to call him a Scientist. Thus we might say, that as an Artist is a Musician, Painter, or Poet, a Scientist is a Mathematician, Physicist, or Naturalist.”

The scientific community initially objected to this term, and it wasn’t until the late 19th/early 20th century that it became established in the United States and Great Britain. (There’s a nice little blog post about it here if you are interested in finding out more about the history of the word). Moving from ‘Man of Science’ to ‘Scientist’ better acknowledges that women actually are capable of scientific pursuit, yet there’s still room for improvement here. Then again, we still have many labels and titles that hark back to older times.  Take ‘PhD’ which stands for Doctorate of Philosophy. The origin of the word philosophy has its roots in the Greek philo– meaning ‘love’ and –sophos meaning wisdom. 

It is difficult to define what a science is. In simple terms, science is a process, whereby you collect enough data in a valid and repeatable way, using the scientific method. The biggest commonality between all scientists is simply that they are studying something in great depth. There are certainly many commonalities between scientists  but there are even more differences. However, in news headlines, we more frequently read ‘Scientists say’ than ‘Physicists says’ or ‘Geneticists says’ which can contribute to a simplification or vagueness of what a specific scientist does, and a lack of appreciation for the diversity of people this term represents.

umbrellaDelving into the diversity

Let’s examine the study of Parkinson’s disease, a neurodegenerative condition that predominantly affects motor function (tremor, rigidity, difficulty with initiating movement), as well as cognitive and emotional functioning.
 greywellyA geneticist might spend their day in a lab, analysing large genetic samples, trying to understand why some people get Parkinson’s disease and others don’t.
greywellyA neurologist might spend their morning in a clinic seeing patients, and the afternoon in a lab carrying out a clinical trials to investigate the effectiveness of a new drug.
greywellyA psychologist might be trying to develop a non-drug based therapy, such as exercise or diet modification, to help alleviate the symptoms of Parkinson’s.
greywellyA radiologist might carry out an MRI scan to investigate changes in activity in specific brain regions, and relate this to behavioural symptoms.

Whilst each one is a neuroscientist, in that they study the brain in one form or another, they have vastly different daily routines, skill sets, and areas of expertise. Yet they are all working towards the same goal: to understand and tackle Parkinson’s disease. This example shows how even a specific scientific title, neuroscientist, can mean many different things.

Diversity of roles needs diversity of people. Science benefits from a diverse group of people, with a diverse set of skills. We shouldn’t  limit the list of people who think they can participate in science, or limit how they can.

umbrellaPerceptions of a ‘Scientist’

The public image of ‘scientist’ has been a concern  for many years and systematic research into this topic goes back as far as Mead & Meatraux’s seminal work (1975). In this study, 35,000 US high school students wrote an essay describing their view of a scientist. Analysis of these essays revealed an elderly or middle-aged man, in a white coat, with glasses, working in a laboratory, performing dangerous experiments.

Image source 
Drawing_from_original_DAST_study.jpg
Another prominent study, Chambers (1983), asked 4,807 children aged 5-11 years to draw scientists. By 7 or 8 years old this stereotype was starting to emerge. The older the child, the more similar the drawing was to the description above. Only 28 female scientists were drawn, and only by girls. This instrument, known as the ‘Draw-A-Scientist Test (DAST)’ has been widely used in research since.  Admittedly, these two studies
were carried out quite some years ago, and you could argue that societal views have changed for the better. A full discussion of that is beyond the scope of this blog post, and I struggled to find studies in the past ten years that had sample sizes as big as these two. Yet some more recent research and commentaries on this stereotype suggest it unfortunately still exists, to some extent. You can find the references for the above two studies, and a few more recent ones, at the end of the article.

umbrella
Does this restrictive perception impact on science itself?

So far we’ve been discussing societal attitudes towards the term scientist.  The restrictive view of what it is to be a scientist has practical consequences, contributing to the demographics of the scientific workplace today.  If people interested in science don’t think they fit into this restrictive view of a scientist, and don’t see people working as scientists they can identify with, they are less likely to  feel they are needed or capable of a career in science.

In 2014, The Royal Society “set out to analyse and understand the composition of the scientific workforce in terms of gender, disability, ethnicity and socio-economic status and background.” They used big samples from three different sources.  Though their results paint a complex picture, clear trends do emerge, highlighting there is a lack of diversity in science. You can read a short summary of the report, or the full report itself, here.

Education and public engagement can go a long way to improving this lack of diversity. In order for people to understand the choices that are available to them, we must avidly teach that there is no particular gender, race, background, or rigid set of skills attached to being a scientist. As well as this, enough scientists should be vocal about what they do, but also who they are and where they’ve come from. This is by no means the magic solution to the problem of lack of diversity in science, and much more funding and opportunities are needed for some individuals to make a scientific career even an option for them. Nonetheless, more communication and transparency will help enable people with different skill sets, and from wider spread of backgrounds, to apply themselves to a worthwhile and satisfying pursuit, and for society to get maximum benefit from this.

Edited by Jonathan Fagg 

_______________________________________

The two main studies I discussed about the ‘Draw A Scientist Test’:

  • Chambers, D.W. (1983). “Stereotypic Images of the Scientist: The Draw a Scientist Test”. Science Education 67 (2): 255–265.
    Mead, M.; R. Metraux (1957). “The Image of the Scientist Among High School Students: a Pilot Study”. Science 126 (3270): 384–390

More recent commentary on the view of scientists:

  • The Wikipedia page provides a well-sourced background on the DAST, and the study of it over the years!
  • Frazzetto, G. (2004). The changing identity of the scientist. EMBO reports, 5(1), 18-20.
  • Losh, S. C., Wilke, R., & Pop, M. (2008). Some methodological issues with “Draw a Scientist Tests” among young children. International Journal of Science Education, 30(6), 773-792.
  • Schibeci, R. (2006) Student images of scientists : What are they? Do they matter? Teaching Science, 52 (2). pp. 12-16.
  • Steinke et al (2007). Assessing media influences on middle school–aged children’s perceptions of women in science using the Draw-A-Scientist Test (DAST). Science Communication, 29(1), 35-64.