Square eyes and a fried brain, or a secret cognitive enhancer- how do video games affect our brain?

on

By Shireene Kalbassi

Edited By Lauren & Monika

diff1

If, like me, you spent your childhood surrounded by Gameboys and computer games, you have probably heard warnings from your parents that your eyes will turn square, and that your brain will turn to mush. While we can safely say that we are not suffering from an epidemic of square-eyed youths, it is less clear what gaming is doing to our brain.

In the support of worried parents all around the world, there is a disorder associated with gaming. Internet gaming disorder is defined as being an addictive behaviour, characterised by an uncontrollable urge to play video games. In 2013, internet gaming disorder was added to the Diagnostic and Statistical Manual of Mental Disorders (DSM), with a footnote, saying that more research on the matter is needed[i]. Similarly, in 2018, the world health organisation (WHO) included internet gaming disorder to the section ‘disorders due to addictive behaviours’[ii].

There is evidence to suggest that internet gaming does lead to changes in brain regions associated with addiction. Structurally, it has been shown that individuals diagnosed with internet gaming disorder show an increase in the size of a brain region known as the striatum, a region associated with pleasure, motivation, and drug addiction (Cai et al 2016[iii], Robbins et al 2002[iv]). The brains of those with internet gaming disorder also show altered responses to stimuli related to gaming. In one study, two groups of participants were assessed: one with internet gaming addiction, and the other without. All the participants with internet gaming disorder were addicted to the popular multiplayer online role-playing game, World of Warcraft. The participants were shown a mixture of visual cues, some being associated with World of Warcraft, and others being neutral. Whilst being shown the visual cues, the brains of the participants were scanned for brain activation using an fMRI machine. It was observed that when being shown visual cues relating to gaming, the participants with internet gaming disorder showed increased activation of brain regions associated with drug addiction, including the striatum and the prefrontal cortex.  The activation of these brain regions was positively correlated with self-reported ‘craving’ for these games; the higher the craving for the game, the higher the levels of activation (Ko et al 2009[v]). These studies, among others, do suggest that gaming does have a place in joining the list of non-substance related addictive disorders.

But don’t uninstall your games yet; it is important to note that not everyone who plays computer games will become addicted. And what if there is a brighter side to gaming? What if all those hours of grinding away on World of Warcraft, thrashing your friends on Mario Kart, or chilling on Minecraft might actually benefit you in some way? There is a small, but growing, amount of research that suggests that gaming might be good for your brain.

What we have learnt about how the brain responds to the real world, is being applied to how the brain responds to the virtual world. In the famous work of Maguire et al (2000[vi]), it was demonstrated that the taxi drivers of London showed an increased volume of the hippocampus, a region associated with spatial navigation and awareness. This increased volume was attributed to the acquisition of a spatial representation of London. Following from this, some researchers asked how navigation through a virtual world may impact the hippocampus.

In one of these studies, the researchers investigated how playing Super Mario 64, a game in which you spend a large amount of time running and jumping around a virtual world (sometimes on a giant lizard) impacts the hippocampus. When compared to a group that did not train on Super Mario 64, the group that trained on Super Mario 64 for 2 months showed increased volumes of the hippocampus and the prefrontal cortex. As reduced volumes of the hippocampus and the prefrontal cortex are associated with disorders such as post-traumatic stress disorder, schizophrenia and neurodegenerative diseases, the researchers speculate that video game training may have a future in their treatment (Kühn et al 2014[vii]). In another study, the impact of training on Super Mario 64 on the hippocampus of older adults, who are particularly at risk of hippocampus-related pathology, was assessed. It was observed that the group that trained by playing Super Mario 64 for 6 months showed an increased hippocampal volume and improved memory performance compared to participants who did not train on Super Mario 64 (West et al 2017[viii]). So, it appears that navigating virtual worlds, as well as the real world, may lead to hippocampal volume increase and may have positive outcomes on cognition.

1

A screenshot of Super Mario 64. This game involves exploration of a virtual world. Image taken from Kühn et al 2014[1]

 

Maybe it makes sense that the world being explored doesn’t have to be real to have an effect on the hippocampus, and games like Super Mario 64 have plenty to offer in terms of world exploration and navigation. But what about the most notorious of games, those first-person shooter action games? It has been suggested that first-person shooter games can lead to increased aggressive behaviours in those who play them, however researchers do not agree that this effect exists (Markey et al 2014[ix] Greitemeyer et al 2014[x]). Nevertheless, can these action games also have more positive effects on the cognitive abilities of the brain? Unlike Super Mario 64, these games require the player to quickly respond to stimuli and rapidly switch between different weapons and devices to use, depending upon the given scenario. Some researchers have investigated how playing action games, such as Call of Duty, Red Dead Redemption, or Counterstrike, impact short-term memory. Participants who either did not play action games, causally played action games, or were experienced in playing action games were tested for visual attention capabilities. The participants were tested on numerous visual attention tests, involving recall and identification of cues that were flashed briefly on a screen. The researchers observed that those who played action games showed significantly better encoding of visual information to short-term memory, dependent on their gaming experience, compared to those who did not (Wilms et al 2013[xi]).

In another study, the impact of playing action games on working memory was assessed. Working memory is a cognitive system involved in the active processing of information, unlike short-term memory which involves the recall of information following a short delay (Baddeley et al 2003[xii]). In this study, the researchers tested groups of participants who either did not play action games or did play action games. The researchers tested the participants’ working memory by utilising a cognitive test known as the “n-back test”. This test involves watching a sequence of squares that are displayed on a screen in alternating positions. As the test progresses the participants have to remember the position of the squares on the screen from the previous trials whilst memorising the squares being shown to them at that moment.  The researchers observed that people who did play action games outperformed those who did not on this test; they were better able to remember the previous trials, whilst simultaneously memorising the current trials (Colzato et al 2013[xiii]). From these studies, it appears that action games may have some benefit on the cognitive abilities of the players, leading to increased short-term processing of information in those who play them.

A screen grab from first person shooter games: Call of Duty: WW2 (left), and Halo (right). These fast-paced games involve quickly reacting to stimuli and making quick decisions to bypass enemies and progress in the game.

 

So, for the worried parents, and the individuals who enjoy indulging in video games, maybe it’s not all bad. As long as you are not suffering from a form of gaming addiction (and if you think you might be please see a health expert) maybe all these hours gaming may actually not be as bad for your brain as it might seem. But ultimately, much more research is needed to understand how a broader range of games played over childhood development, and for time periods of years and decades, affects our brains and mental health.

If you think you may be suffering from a gaming addiction, see the NHS page  for more information.

References

[i] American Psychiatric Association, 2013. Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Pub

[ii] World Health Organization [WHO]. 2018a. ICD-11 beta draft – Mortality and morbidity statistics. Mental, behavioural or neurodevelopmental disorders.

[iii] Cai, C., Yuan, K., Yin, J., Feng, D., Bi, Y., Li, Y., Yu, D., Jin, C., Qin, W. and Tian, J., 2016. Striatum morphometry is associated with cognitive control deficits and symptom severity in internet gaming disorder. Brain imaging and behavior10(1), pp.12-20.

[iv] Robbins, T.W. and Everitt, B.J., 2002. Limbic-striatal memory systems and drug addiction. Neurobiology of learning and memory78(3), pp.625-636

[v] Ko, C.H., Liu, G.C., Hsiao, S., Yen, J.Y., Yang, M.J., Lin, W.C., Yen, C.F. and Chen, C.S., 2009. Brain activities associated with gaming urge of online gaming addiction. Journal of psychiatric research43(7), pp.739-747

[vi] Maguire, E.A., Gadian, D.G., Johnsrude, I.S., Good, C.D., Ashburner, J., Frackowiak, R.S. and Frith, C.D., 2000. Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences97(8), pp.4398-4403.

[vii] Kühn, S., Gleich, T., Lorenz, R.C., Lindenberger, U. and Gallinat, J., 2014. Playing Super Mario induces structural brain plasticity: gray matter changes resulting from training with a commercial video game. Molecular psychiatry19(2), p.265

[viii] West, G.L., Zendel, B.R., Konishi, K., Benady-Chorney, J., Bohbot, V.D., Peretz, I. and Belleville, S., 2017. Playing Super Mario 64 increases hippocampal grey matter in older adults. PloS one12(12), p.e0187779.

[ix] Markey, P.M., Markey, C.N. and French, J.E., 2015. Violent video games and real-world violence: Rhetoric versus data. Psychology of Popular Media Culture4(4), p.277

[x] Greitemeyer, T. and Mügge, D.O., 2014. Video games do affect social outcomes: A meta-analytic review of the effects of violent and prosocial video game play. Personality and Social Psychology Bulletin40(5), pp.578-589.

[xi] Wilms, I.L., Petersen, A. and Vangkilde, S., 2013. Intensive video gaming improves encoding speed to visual short-term memory in young male adults. Acta psychologica142(1), pp.108-118

[xii] Baddeley, A., 2003. Working memory: looking back and looking forward. Nature reviews neuroscience4(10), p.829

[xiii] Colzato, L.S., van den Wildenberg, W.P., Zmigrod, S. and Hommel, B., 2013. Action video gaming and cognitive control: playing first person shooter games is associated with improvement in working memory but not action inhibition. Psychological research77(2), pp.234-239

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s